Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.748
Filtrar
1.
Nat Commun ; 15(1): 2810, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561347

RESUMO

Osteosarcoma is the most common primary malignant bone tumor with a strong tendency to metastasize, limiting the prognosis of affected patients. Genomic, epigenomic and transcriptomic analyses have demonstrated the exquisite molecular complexity of this tumor, but have not sufficiently defined the underlying mechanisms or identified promising therapeutic targets. To systematically explore RNA-protein interactions relevant to OS, we define the RNA interactomes together with the full proteome and the transcriptome of cells from five malignant bone tumors (four osteosarcomata and one malignant giant cell tumor of the bone) and from normal mesenchymal stem cells and osteoblasts. These analyses uncover both systematic changes of the RNA-binding activities of defined RNA-binding proteins common to all osteosarcomata and individual alterations that are observed in only a subset of tumors. Functional analyses reveal a particular vulnerability of these tumors to translation inhibition and a positive feedback loop involving the RBP IGF2BP3 and the transcription factor Myc which affects cellular translation and OS cell viability. Our results thus provide insight into potentially clinically relevant RNA-binding protein-dependent mechanisms of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Proliferação de Células/genética , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Regulação Neoplásica da Expressão Gênica
2.
J Exp Clin Cancer Res ; 43(1): 97, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561833

RESUMO

BACKGROUND: CAR T cell therapy is a promising approach to improve outcomes and decrease toxicities for patients with cancer. While extraordinary success has been achieved using CAR T cells to treat patients with CD19-positive malignancies, multiple obstacles have so far limited the benefit of CAR T cell therapy for patients with solid tumors. Novel manufacturing and engineering approaches show great promise to enhance CAR T cell function against solid tumors. However, similar to single agent chemotherapy approaches, CAR T cell monotherapy may be unable to achieve high cure rates for patients with difficult to treat solid tumors. Thus, combinatorial drug plus CAR T cell approaches are likely required to achieve widespread clinical success. METHODS: We developed a novel, confocal microscopy based, high-content screen to evaluate 1114 FDA approved drugs for the potential to increase expression of the solid tumor antigen B7-H3 on the surface of osteosarcoma cells. Western blot, RT-qPCR, siRNA knockdown and flow cytometry assays were used to validate screening results and identify mechanisms of drug-induced B7-H3 upregulation. Cytokine and cytotoxicity assays were used to determine if drug pre-treatment enhanced B7-H3-CAR T cell effector function. RESULTS: Fifty-five drugs were identified to increase B7-H3 expression on the surface of LM7 osteosarcoma cells using a novel high-content, high-throughput screen. One drug, ingenol-3-angelate (I3A), increased B7-H3 expression by up to 100%, and was evaluated in downstream experiments. Validation assays confirmed I3A increased B7-H3 expression in a biphasic dose response and cell dependent fashion. Mechanistic studies demonstrated that I3A increased B7-H3 (CD276) mRNA, total protein, and cell surface expression via protein kinase C alpha activation. Functionally, I3A induced B7-H3 expression enhanced B7-H3-CAR T cell function in cytokine production and cytotoxicity assays. CONCLUSIONS: This study demonstrates a novel high-content and high-throughput screen can identify drugs to enhance CAR T cell activity. This and other high-content technologies will pave the way to develop clinical trials implementing rational drug plus CAR T cell combinatorial therapies. Importantly, the technique could also be repurposed for an array of basic and translational research applications where drugs are needed to modulate cell surface protein expression.


Assuntos
Neoplasias Ósseas , Diterpenos , Osteossarcoma , Humanos , Proteína Quinase C-alfa/metabolismo , Antígenos B7/genética , Antígenos B7/metabolismo , Osteossarcoma/metabolismo , Neoplasias Ósseas/patologia , Linfócitos T , Citocinas/metabolismo , Linhagem Celular Tumoral
3.
J Orthop Surg Res ; 19(1): 260, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659042

RESUMO

Circular RNAs (circRNAs) are a newly appreciated type of endogenous noncoding RNAs that play vital roles in the development of various human cancers, including osteosarcoma (OS). In this study, we investigated three circRNAs (circ_0076684, circ_0003563, circ_0076691) from the RUNX Family Transcription Factor 2 (RUNX2) gene locus in OS. We found that the expression of circ_0076684, circ_0003563, circ_0076691, and RUNX2 mRNA is upregulated in OS, which is a consequence of CBX4-mediated transcriptional activation. Among these three RUNX2-circRNAs, only circ_0076684 is significantly associated with the clinical features and prognosis of OS patients. Functional experiments indicate that circ_0076684 promotes OS progression in vitro and in vivo. Circ_0076684 acts as a sponge for miR-370-3p, miR-140-3p, and miR-193a-5p, raising Cut Like Homeobox 1 (CUX1) expression by sponging these three miRNAs. Furthermore, we presented that circ_0076684 facilitates OS progression via CUX1. In conclusion, this study found that the expression of three circRNAs and RUNX2 mRNA from the RUNX2 gene locus is significantly upregulated in OS, as a result of CBX4-mediated transcriptional activation. Circ_0076684 raises CUX1 expression by sponging miR-370-3p, miR-140-3p, and miR-193a-5p, and facilitates OS progression via CUX1.


Assuntos
Neoplasias Ósseas , Subunidade alfa 1 de Fator de Ligação ao Core , Ligases , MicroRNAs , Osteossarcoma , Proteínas do Grupo Polycomb , RNA Circular , Regulação para Cima , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Humanos , RNA Circular/genética , MicroRNAs/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Masculino , Animais , Progressão da Doença , Linhagem Celular Tumoral , Feminino , Ativação Transcricional/genética , Prognóstico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
Sci Rep ; 14(1): 9186, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649690

RESUMO

Osteosarcoma (OS) is the most common malignant bone tumor with high pathological heterogeneity. Our study aimed to investigate disulfidptosis-related modification patterns in OS and their relationship with survival outcomes in patients with OS. We analyzed the single-cell-level expression profiles of disulfidptosis-related genes (DSRGs) in both OS microenvironment and OS subclusters, and HMGB1 was found to be crucial for intercellular regulation of OS disulfidptosis. Next, we explored the molecular clusters of OS based on DSRGs and related immune cell infiltration using transcriptome data. Subsequently, the hub genes of disulfidptosis in OS were screened by applying multiple machine models. In vitro and patient experiments validated our results. Three main disulfidptosis-related molecular clusters were defined in OS, and immune infiltration analysis suggested high immune heterogeneity between distinct clusters. The in vitro experiment confirmed decreased cell viability of OS after ACTB silencing and higher expression of ACTB in patients with lower immune scores. Our study systematically revealed the underlying relationship between disulfidptosis and OS at the single-cell level, identified disulfidptosis-related subtypes, and revealed the potential role of ACTB expression in OS disulfidptosis.


Assuntos
Neoplasias Ósseas , Regulação Neoplásica da Expressão Gênica , Osteossarcoma , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/mortalidade , Osteossarcoma/metabolismo , Microambiente Tumoral/genética , Prognóstico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias Ósseas/mortalidade , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Actinas/metabolismo , Actinas/genética
5.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504531

RESUMO

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Diosgenina/análogos & derivados , Osteossarcoma , Humanos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ligantes , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ciclo Celular , Apoptose , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Movimento Celular
6.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 113-119, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430033

RESUMO

Strategies targeting lin-28 homolog A (LIN28A) for the treatment of osteosarcoma are limited, even though salient findings have illustrated the crucial role of LIN28A in bone deformities and cancer. In the present study, we proved circ_0096041, one of the circular RNAs (circRNAs) with significant upregulated expression in osteosarcoma, to be notably engaged in the progression of osteosarcoma. We elucidated that osteosarcoma patients with highly expressed circ_0096041 had relatively worse prognoses. We determined that circ_0096041 potentially sponge miR-556-5p using the Circular RNA Interactome database. Meanwhile, we proved circ_0096041 was associated with miR-556-5p. Furthermore, we determined that miR-556-5p was targeted by LIN28A directly, evidenced by in silico analysis using the miRWALK tool and in vitro analysis. Functionally, our experimental setting aimed to explore the function of circ_0096041/miR-556-5p/LIN28A axis in vitro and in vivo. Our findings demonstrated that circ_0096041 boosted the proliferation and migration of osteosarcoma via LIN28A/miR-556-5p axis. In vivo models were further established to estimate the metastasis promoted by circ_0096041. This research elucidated the enhanced osteosarcoma progression by circ_0096041 and its potential mechanism, which provided innovative targets for osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Circular , Humanos , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , RNA Circular/genética
7.
Chem Biol Interact ; 393: 110931, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38423378

RESUMO

The study investigates the anticancer activity of mefenamic acid against osteosarcoma, shedding light on its underlying mechanisms and therapeutic potential. Mefenamic acid exhibited robust inhibitory effects on the proliferation of MG-63, HOS, and H2OS osteosarcoma cells in a dose-dependent manner. Moreover, mefenamic acid induced cellular toxicity in MG63 cells, as evidenced by LDH leakage, reflecting its cytotoxic impact. Furthermore, mefenamic acid effectively suppressed the migration and invasion of MG-63 cells. Mechanistically, mefenamic acid induced apoptosis in MG-63 cells through mitochondrial depolarization, activation of caspase-dependent pathways, and modulation of the Bcl-2/Bax axis. Additionally, mefenamic acid promoted autophagy and inhibited the PI3K/Akt/mTOR pathway, further contributing to its antitumor effects. The molecular docking studies provide compelling evidence that mefenamic acid interacts specifically and strongly with key proteins in the PI3K/AKT/mTOR pathway, suggesting a novel mechanism by which mefenamic acid could exert anti-osteosarcoma effects. In vivo studies using a xenograft mouse model demonstrated significant inhibition of MG-63 tumor growth without adverse effects, supporting the translational potential of mefenamic acid as a safe and effective therapeutic agent against osteosarcoma. Immunohistochemistry staining corroborated the in vivo findings, highlighting mefenamic acid's ability to suppress tumor proliferation and inhibit the PI3K/AKT/mTOR pathway within the tumor microenvironment. Collectively, these results underscore the promising therapeutic implications of mefenamic acid in combating osteosarcoma, warranting further investigation for clinical translation and development.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Animais , Camundongos , Ácido Mefenâmico/farmacologia , Ácido Mefenâmico/uso terapêutico , Transdução de Sinais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Xenoenxertos , Simulação de Acoplamento Molecular , Osteossarcoma/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Microambiente Tumoral
8.
Chem Biol Interact ; 392: 110904, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360085

RESUMO

Osteosarcoma is a prevalent kind of primary bone malignancy. Trifluoperazine, as an antipsychotic drug, has anti-tumor activity against a variety of cancers. Nevertheless, the impact of trifluoperazine on osteosarcoma is unclear. Our investigation aimed to explore the mechanism of trifluoperazine's effect on osteosarcoma. We found that trifluoperazine inhibited 143B and U2-OS osteosarcoma cell proliferation in a method based on the dose. Furthermore, it was shown that trifluoperazine induced the accumulation of reactive oxygen species (ROS) to cause mitochondrial damage and induced mitophagy in osteosarcoma cells. Finally, combined with RNA-seq results, we first demonstrated the AMPK/mTOR/ULK1 signaling pathway as a potential mechanism of trifluoperazine-mediated mitophagy in osteosarcoma cells and can be suppressed by AMPK inhibitor Compound C.


Assuntos
Mitofagia , Osteossarcoma , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifluoperazina/farmacologia , Autofagia , Apoptose , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
9.
Front Biosci (Landmark Ed) ; 29(2): 83, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38420794

RESUMO

BACKGROUND: Lactic acid, previously regarded only as an endpoint of glycolysis, has emerged as a major regulator of tumor invasion, growth, and the tumor microenvironment. In this study, we aimed to explore the reprogramming of lactic acid metabolism relevant to osteosarcoma (OS) microenvironment by decoding the underlying lactic acid metabolic landscape of OS cells and intercellular signaling alterations. METHODS: The landscape of OS metabolism was evaluated using single-cell gene expression data, lactic acid metabolism clustering, and screening of the hub genes in lactic acid metabolism of OS samples using transcriptome data. The role of the hub gene NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 6 (NDUFAF6) was validated with in vitro studies and patient experiments. RESULTS: Single-cell RNA sequencing data validated a lactic acid metabolismhigh subcluster in OS. Further investigation of intercellular communications revealed a unique metabolic communication pattern between the lactic acid metabolismhigh subcluster and other subclusters. Next, two lactic acid metabolic reprogramming phenotypes were defined, and six lactic acid metabolism-related genes (LRGs), including the biomarker NDUFAF6, were screened in OS. In vitro studies and patient experiments confirmed that NDUFAF6 is a crucial lactic acid metabolism-associated gene in OS. CONCLUSIONS: The patterns of lactic acid metabolism in OS suggested metabolic reprogramming phenotypes relevant to the tumor microenvironment (TME) and identified NDUFAF6 as an LRG prognostic biomarker.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Ácido Láctico/metabolismo , Glicólise/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/metabolismo , Biomarcadores/metabolismo , Microambiente Tumoral/genética
10.
Medicine (Baltimore) ; 103(3): e36467, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241548

RESUMO

Osteosarcoma (OS) has a high recurrence rate, disability rate, mortality and metastasis, it brings great economic burden and psychological pressure to patients, and then seriously affects the quality of life of patients. At present, the treatment methods of OS mainly include radiotherapy, chemotherapy, surgical therapy and neoadjuvant chemotherapy combined with limb salvage surgery. These treatment methods can relieve the clinical symptoms of patients to a certain extent, and also effectively reduce the disability rate, mortality and recurrence rate of OS patients. However, because metastasis of tumor cells leads to new complications, and OS cells become resistant with prolonged drug intervention, which reduces the sensitivity of OS cells to drugs, these treatments still have some limitations. More and more studies have shown that traditional Chinese medicine (TCM) has the characteristics of "multiple targets and multiple pathways," and can play an important role in the development of OS through several key signaling pathways, including PI3K/AKT, Wnt/ß-catenin, tyrosine kinase/transcription factor 3 (JAK/STAT3), Notch, transforming growth factor-ß (TGF-ß)/Smad, nuclear transcription factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), nuclear factor E2-related factor 2 (Nrf2), Hippo/YAP, OPG/RANK/RANKL, Hedgehog and so on. In this paper, the signaling pathways of cross-interference between active ingredients of TCM and OS were reviewed, and the development status of novel OS treatment was analyzed. The active ingredients in TCM can provide therapeutic benefits to patients by targeting the activity of signaling pathways. In addition, potential strategies for targeted therapy of OS by using ferroptosis were discussed. We hope to provide a unique insight for the in-depth research and clinical application of TCM in the fields of OS growth, metastasis and chemotherapy resistance by understanding the signaling crosstalk between active ingredients in TCM and OS.


Assuntos
Medicina Tradicional Chinesa , Osteossarcoma , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Qualidade de Vida , Transdução de Sinais , NF-kappa B/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
11.
J Nanobiotechnology ; 22(1): 29, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216937

RESUMO

BACKGROUND: Osteosarcoma represents a serious clinical challenge due to its widespread genomic alterations, tendency for drug resistance and distant metastasis. New treatment methods are urgently needed to address those treatment difficulties in osteosarcoma to improve patient prognoses. In recent years, small-molecule based anion transporter have emerged as innovative and promising therapeutic compound with various biomedical applications. However, due to a lack of efficient delivery methods, using ion transporters as therapeutic drugs in vivo remains a major challenge. RESULT: Herein, we developed self-assembled supramolecular drugs based on small-molecule anion transporters, which exhibited potent therapeutic effect towards osteosarcoma both in vitro and in vivo. The anion transporters can disrupt intracellular ion homeostasis, inhibit proliferation, migration, epithelial-mesenchymal transition process, and lead to osteosarcoma cell death. RNA sequencing, western blot and flow cytometry indicated reprogramming of HOS cells and induced cell death through multiple pathways. These pathways included activation of endoplasmic reticulum stress, autophagy, apoptosis and cell cycle arrest, which avoided the development of drug resistance in osteosarcoma cells. Functionalized with osteosarcoma targeting peptide, the assembled supramolecular drug showed excellent targeted anticancer therapy against subcutaneous xenograft tumor and lung metastasis models. Besides good tumor targeting capability and anti-drug resistance, the efficacy of the assembly was also attributed to its ability to regulate the tumor immune microenvironment in vivo. CONCLUSIONS: In summary, we have demonstrated for the first time that small-molecule anion transporters are capable of killing osteosarcoma cells through multiple pathways. The assemblies, OTP-BP-L, show excellent targeting and therapeutic effect towards osteosarcoma tumors. Furthermore, the supramolecular drug shows a strong ability to regulate the tumor immune microenvironment in vivo. This work not only demonstrated the biomedical value of small-molecule anion transporters in vivo, but also provided an innovative approach for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Preparações Farmacêuticas , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo , Apoptose , Neoplasias Ósseas/metabolismo , Microambiente Tumoral
12.
J Orthop Surg Res ; 19(1): 33, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178201

RESUMO

Chemotherapy resistance accompanied by energy metabolism abnormality functions as one of the main reasons for treatment failure and poor prognosis. However, the function of N6-methyladenosine (m6A)-modified circular RNA (circRNA) on osteosarcoma (OS) is still unclear. Here, present research investigated the potential role and mechanism of circARHGAP12 on OS doxorubicin (Dox) resistance and aerobic glycolysis. Results indicated that circARHGAP12 was a novel m6A-modified circRNA, which was up-regulated in OS cells. Overexpression of circARHGAP12 promoted the Dox resistance half-maximal inhibitory concentration (IC50) and aerobic glycolysis (glucose uptake, lactate and ATP production) in OS cells (Saos-2/Dox, MG63/Dox). Mechanistically, m6A-modified circARHGAP12 could bind with c-Myc mRNA through m6A-dependent manner, thereby enhancing the c-Myc mRNA stability. Thus, these findings revealed the critical function of circARHGAP12 on OS Dox-resistance and aerobic glycolysis. Taken together, our study demonstrated a critical function of circARHGAP12 on OS chemotherapy resistance and energy metabolism abnormality, providing critical roles on OS treatment.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , RNA Circular/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Doxorrubicina/farmacologia , Glicólise
13.
Adv Protein Chem Struct Biol ; 138: 275-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38220428

RESUMO

Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-ß, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adulto , Humanos , Proteômica , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Genômica , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Fatores de Despolimerização de Actina/metabolismo , Anexinas
14.
Int J Cancer ; 154(9): 1626-1638, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38196144

RESUMO

Due to the lack of a precise in vitro model that can mimic the nature microenvironment in osteosarcoma, the understanding of its resistance to chemical drugs remains limited. Here, we report a novel three-dimensional model of osteosarcoma constructed by seeding tumor cells (MG-63 and MNNG/HOS Cl no. 5) within demineralized bone matrix scaffolds. Demineralized bone matrix scaffolds retain the original components of the natural bone matrix (hydroxyapatite and collagen type I), and possess good biocompatibility allowing osteosarcoma cells to proliferate and aggregate into clusters within the pores. Growing within the scaffold conferred elevated resistance to doxorubicin on MG-63 and MNNG/HOS Cl no. 5 cell lines as compared to two-dimensional cultures. Transcriptomic analysis showed an increased enrichment for drug resistance genes along with enhanced glutamine metabolism in osteosarcoma cells in demineralized bone matrix scaffolds. Inhibition of glutamine metabolism resulted in a decrease in drug resistance of osteosarcoma, which could be restored by α-ketoglutarate supplementation. Overall, our study suggests that microenvironmental cues in demineralized bone matrix scaffolds can enhance osteosarcoma drug responses and that targeting glutamine metabolism may be a strategy for treating osteosarcoma drug resistance.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Glutamina , Matriz Óssea/metabolismo , Matriz Óssea/patologia , Metilnitronitrosoguanidina/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Linhagem Celular Tumoral , Resistência a Medicamentos , Microambiente Tumoral
15.
J Biochem Mol Toxicol ; 38(1): e23537, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700640

RESUMO

Increasing evidence indicated that protein arginine methyltransferase-1 (PRMT1) is an oncogene in multiple malignant tumors, including osteosarcoma (OS). The aim of this study was to investigate the underlying mechanism of PRMT1 in OS. The effects of PRMT1 or BCAT1, branched-chain amino acid transaminase 1 (BCAT1) on OS cell proliferation, invasion, autophagy, and apoptosis in vitro were examined. Moreover, molecular control of PRMT1 on c-Myc or transactivation of BCAT1 on c-Myc was assessed by chromatin immunoprecipitation and quantitative reverse transcription PCR assays. The effects of PRMT1 in vivo were examined with a xenograft tumor model. The results showed that PRMT1 was potently upregulated in OS tissues and cells. Upregulation of PRMT1 markedly increased OS cell proliferation and invasion in vitro and reduced cell apoptosis, whereas PRMT1 silencing showed the opposite effects. Cisplatin, one of the most effective chemotherapeutic drugs, improved cell survival rate by inducing the expression of PRMT1 to downregulate the cisplatin sensitivity. Meanwhile, the cisplatin-induced upregulation of PRMT1 expression caused dramatically autophagy induction and autophagy-mediated apoptosis by inactivating the mTOR signaling pathway, which could be reversed by 3-methyladenine, an autophagy inhibitor, or PRMT1 silencing. PRMT1 could activate c-Myc transcription and increase c-Myc-mediated expression of BCAT1. Furthermore, BCAT1 overexpression counteracted the effects of PRMT1 knockdown on cell proliferation, invasion, and apoptosis. Of note, deficiency of PRMT1 suppressed tumor growth in vivo. PRMT1 facilitated the proliferation and invasion of OS cells, inhibited cell apoptosis, and decreased chemotherapy sensitivity through c-Myc/BCAT1 axis, which may become potential target in treating OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Apoptose , Metiltransferases/metabolismo , Neoplasias Ósseas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Proteínas Repressoras/metabolismo , Transaminases/genética , Transaminases/metabolismo , Transaminases/farmacologia
16.
Biosystems ; 235: 105093, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052344

RESUMO

Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.


Assuntos
Neoplasias Ósseas , Fibrossarcoma , Osteossarcoma , Rabdomiossarcoma , Sarcoma , Criança , Pessoa de Meia-Idade , Humanos , Idoso , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Rabdomiossarcoma/genética , Fibrossarcoma/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , RNA Mensageiro/genética
17.
Cell Signal ; 114: 110977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984605

RESUMO

Circular RNAs (circRNAs) are a class of non-coding RNAs which take part in the regulation of the initiation and development of different types of cancer. Numerous studies have demonstrated that circRNAs are involved in the progression of osteosarcoma (OS) as well. Thus, we put our emphasis on the exploration of crucial circRNAs in the process of OS initiation and progression. Using RNA sequencing, we found that circSATB2 was highly expressed in OS tissues compared with adjacent normal tissues. Then, we confirmed the high expression of circSATB2 in OS cell lines and OS tissues and its high expression was related to poor prognosis of OS patients. Functional experiments exhibited that circSATB2 promoted OS proliferation and migration in vitro, primary OS model and OS lung metastasis model showed that circSATB2 aggravated OS progression in vivo. Mechanistically, circSATB2 was found to promote OS progression through sponging miR-661 and FUS regulating the mRNA of ZNFX1. Therefore, circSATB2 could act as a prognostic marker and a therapeutic target for osteosarcoma in the future.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Circular , Humanos , Antígenos de Neoplasias , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
18.
Oncogene ; 43(1): 47-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935976

RESUMO

ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-ß signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-ß signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-ß signaling by soluble TGFBR3, while TGF-ß signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-ß receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Retroalimentação , Fator de Crescimento Transformador beta/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Fator 1 de Resposta a Butirato , Sindecana-4/metabolismo
19.
Environ Toxicol ; 39(1): 212-227, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37676907

RESUMO

Circ_UBAP2 is extensively engaged in regulating the development of various malignancies, containing osteosarcoma (OS). However, its biological significance and function are not fully understood. In this study, we found that circ_UBAP2 and HMGA1 levels were up-regulated, and miR-370-3p and miR-665 expressions were decreased in osteosarcoma tissues. Inhibition of circ_UBAP2 or HMGA1 expression in OS cells, cell viability, invasion and migration abilitities were notably hindered, and cell apoptosis abilities were increased. Bioinformatics analysis predicted that miR-665 and miR-370-3p were the downstream targets of circ_UBAP2, and the dual luciferase experiment demonstrated the correlation between them. In addition, inhibition of miR-665 and miR-370-3p expression could significantly reverse the impact of knocking down circ_UBAP2 on OS cells. HMGA1 was discovered to become the downstream target of both miR-665 and miR-370-3p. It was shown that over-expression of miR-665 or miR-370-3p notably stimulated the cell growth, invasion, and migration of osteosarcoma cells, while hindered cell apoptosis. Nevertheless, this effect could be reversed by concurrent over-expression of HMGA1. Our data strongly prove that circ_UBAP2 makes a vital impact on promoting the proliferation, invasion as well as migration of osteosarcoma cells via down-regulating the level of miR-665 and miR-370-3p, and later up-regulating the level of HMGA1. In conclusion, circ_UBAP2 is upregulated in osteosarcoma, and it competitively adsorbs miR-370-3p and miR-665, resulting in up-regulation of HMGA1, thus promoting OS development.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína HMGA1a/genética , Linhagem Celular Tumoral , Osteossarcoma/metabolismo , Fatores de Transcrição , Neoplasias Ósseas/patologia , Proliferação de Células/genética , Movimento Celular/genética
20.
Environ Toxicol ; 39(1): 238-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688782

RESUMO

Recent studies have shown that Solute Carrier Family 9 Member A2 (SLC9A2) could serve as a biomarker for cancer. However, its mechanism of action in osteosarcoma (OS) was still unclear. In this study, the data sets GSE154530 and GSE99671 were downloaded from the Gene Expression Omnibus (GEO) database, and 31 differentially expressed genes (DEGs) related to methylation were screened by bioinformatics analysis tools. Subsequently, SLC9A2 was screened as a candidate gene from DEGs, which was significantly downregulated in OS. CCK-8, transwell, western blotting and Seahorse XFe24 Cell Metabolic Analyzer assays demonstrated that overexpression of SLC9A2 could constrain OS cell proliferation, invasion, and aerobic glycolysis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated ETS proto-oncogene 1 (ETS1) was a transcription suppressor of SLC9A2, and overexpression of ETS1 could promote methylation levels in specific regions of the SLC9A2 promoter. ETS1 could promote the proliferation, invasion, and aerobic glycolysis ability of OS cells, as well as tumor growth in vivo by inhibiting the expression of SLC9A2. In addition, SLC9A2, suppressing by ETS1, restrains growth and invasion of OS via inhibition of aerobic glycolysis. Thus, SLC9A2 can function as a key inhibitory factor in the aerobic glycolysis to inhibit proliferation and invasion of OS. This indicated that SLC9A2 has a potential targeted therapeutic effect on OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , Linhagem Celular Tumoral , Glicólise/genética , Proliferação de Células/genética , Ciclo do Ácido Cítrico , Osteossarcoma/metabolismo , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Neoplasias Ósseas/patologia , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...